skip to main content


Search for: All records

Creators/Authors contains: "Mujib, Shakir Bin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Hafnium carbide (HfC) is an ultrahigh‐temperature ceramic with high melting point, chemical stability, hardness, and wear resistance. However, its low fracture toughness and poor thermal shock resistance limit its structural applications in extreme environments. In this study, co‐curing of liquid precursors was carried out prior to complete pyrolysis of individual polymeric precursors. First, HfC preceramic polymer precursor was cured, followed by silicon carbonitride (SiCN) precursor curing on a 2D carbon fiber (CF) cloth using the drop‐coating process. The infiltrated CFs were pyrolyzed at 800°C to achieve CF/HfC‐SiCN ceramic mini‐composites. The cross‐linked precursor‐to‐ceramic yield was observed to be as high as 65% when the procedure was carried out in an inert environment. Although stable up to 1200°C, CF/HfC‐SiCN samples demonstrated susceptibility to oxidation at 1500°C in ambient air. The oxidation of HfC in the presence of SiC leads to the formation of a hafnium‐containing silicate (HfxSiyOz) along with hafnia (HfO2). This compound of silicate and hafnia limits oxygen diffusion better than SiO2and HfO2individually. The incorporation of SiCN in HfC ceramic led to improved phase stability compared to a neat HfC system. The results of this study also show that the use of liquid‐phase precursors for HfC and SiCN in the polymer‐infiltrated pyrolysis method is a promising approach to fabricating high‐temperature structural ceramic matrix composites with good oxidation resistance.

     
    more » « less
  2. Free, publicly-accessible full text available August 1, 2024
  3. Abstract

    Energy storage devices beyond lithium-ion batteries (LIBs), such as sodium-ion, potassium-ion, lithium-sulfur batteries, and supercapacitors are being considered as alternative systems to meet the fast-growing demand for grid-scale storage and large electric vehicles. This perspective highlights the opportunities that Si-based polymer-derived ceramics (PDCs) present for energy storage devices beyond LIBs, the complexities that exist in determining the structure-performance relationships, and the need forin situand operando characterizations, which can be employed to overcome the complexities, allowing successful integration of PDC-based electrodes in systems beyond LIBs.

     
    more » « less
  4. Abstract

    A liquid‐phase polymer‐to‐ceramic approach is reported for the synthesis of hafnium carbide (HfC)/hafnium oxide (HfO2) composite particles from a commercial precursor. Typically, HfC ceramics have been obtained by sintering of fine powders, which usually results in large particle size and high porosity during densification. In this study a single‐source liquid precursor was first cured at low temperature and then pyrolyzed at varying conditions to achieve HfC ceramics. The chemical structure of the liquid and cured precursors, and the resulting HfC ceramics was studied using various analytical techniques. The nuclear magnetic resonance and Fourier transform infrared spectroscopy indicated the presence of partially hydrated hafnium oxychloride (Hf–O–Cl·nH2O) in the precursor. Scanning electron microscopy of the resulting HfC crystals showed a size distribution in the range of approx. 600–700 nm. The X‐ray diffraction of the pyrolyzed samples confirmed the formation of crystalline HfC along with monoclinic‐HfO2and free carbon phase. The formation of HfO2in the ceramics was significantly reduced by controlling the low‐temperature curing temperature. Pyrolysis at various temperatures showed that HfC formation occurred even at 1000°C. These results show that the reported precursor could be promising for the direct synthesis of ultrahigh temperature HfC ceramics and for precursor infiltration pyrolysis of reinforced ceramic matrix composites.

     
    more » « less
  5. Transition metal dichalcogenides (TMDs) such as MoSe2 have continued to generate interest in the engineering community because of their unique layered morphology—the strong in-plane chemical bonding between transition metal atoms sandwiched between two chalcogen atoms and the weak physical attraction between adjacent TMD layers provides them with not only chemical versatility but also a range of electronic, optical, and chemical properties that can be unlocked upon exfoliation into individual TMD layers. Such a layered morphology is particularly suitable for ion intercalation as well as for conversion chemistry with alkali metal ions for electrochemical energy storage applications. Nonetheless, host of issues including fast capacity decay arising due to volume changes and from TMD’s degradation reaction with electrolyte at low discharge potentials have restricted use in commercial batteries. One approach to overcome barriers associated with TMDs’ chemical stability functionalization of TMD surfaces by chemically robust precursor-derived ceramics or PDC materials, such as silicon oxycarbide (SiOC). SiOC-functionalized TMDs have shown to curb capacity degradation in TMD and improve long term cycling as Li-ion battery (LIBs) electrodes. Herein, we report synthesis of such a composite in which MoSe2 nanosheets are in SiOC matrix in a self-standing fiber mat configuration. This was achieved via electrospinning of TMD nanosheets suspended in pre-ceramic polymer followed by high temperature pyrolysis. Morphology and chemical composition of synthesized material was established by use of electron microscopy and spectroscopic technique. When tested as LIB electrode, the SiOC/MoSe2 fiber mats showed improved cycling stability over neat MoSe2 and neat SiOC electrodes. The freestanding composite electrode delivered a high charge capacity of 586 mAh g−1electrode with an initial coulombic efficiency of 58%. The composite electrode also showed good cycling stability over SiOC fiber mat electrode for over 100 cycles. 
    more » « less
  6. null (Ed.)
    Ceramics derived from organic polymer precursors, which have exceptional mechanical and chemical properties that are stable up to temperatures slightly below 2000 °C, are referred to as polymer-derived ceramics (PDCs). These molecularly designed amorphous ceramics have the same high mechanical and chemical properties as conventional powder-based ceramics, but they also demonstrate improved oxidation resistance and creep resistance and low pyrolysis temperature. Since the early 1970s, PDCs have attracted widespread attention due to their unique microstructures, and the benefits of polymeric precursors for advanced manufacturing techniques. Depending on various doping elements, molecular configurations, and microstructures, PDCs may also be beneficial for electrochemical applications at elevated temperatures that exceed the applicability of other materials. However, the microstructural evolution, or the conversion, segregation, and decomposition of amorphous nanodomain structures, decreases the reliability of PDC products at temperatures above 1400 °C. This review investigates structure-related properties of PDC products at elevated temperatures close to or higher than 1000 °C, including manufacturing production, and challenges of high-temperature PDCs. Analysis and future outlook of high-temperature structural and electrical applications, such as fibers, ceramic matrix composites (CMCs), microelectromechanical systems (MEMSs), and sensors, within high-temperature regimes are also discussed. 
    more » « less
  7. Abstract

    Three crystalline SiC fibers were studied: Tyranno, Hi‐Nicalon, and Sylramic. Thermodynamic stability of the SiC fibers was determined by high temperature oxide melt solution calorimetry. Results shed light on the thermodynamic penalty or benefit associated with microstructural modification of the ceramic fibers, and how energetics correlate to mechanical properties. Enthalpies of formation from components (SiC, SiO2, Si3N4, and C, ∆H°f,comp) for Tyranno, Hi‐Nicalon, and Sylramic are −12.05 ± 8.71, −58.75 ± 6.93, and −71.10 ± 8.71 kJ/mol Si, respectively. The microstructure in Sylramic offers the greatest stabilizing effect, thus resulting in its much more exothermic enthalpy of formation relative to elements and crystalline components. In contrast, the microstructure in Tyranno offers the least stabilization. The thermodynamic stability of the fibers increases with increasing mixed bonding (Si bonded to both C and O). From mechanical testing, Young's moduli of Tyranno, Hi‐Nicalon, and Sylramic are 112, 205, and 215 GPa, respectively. Greater thermodynamic stability is correlated with a higher Young's modulus.

     
    more » « less